

Part1 FT8モードとは

●FT8の誕生から1年半

2017年夏に発表された「FT8」は瞬く間にユーザー を増やし、いま最も注目されるデジタルモードに躍り 出ました。

またローパワーに小さなアンテナでもDX通信を可 能にすることから、これまでアンテナ設置を諦めてい たアパマンハムにも新たなチャンスが生まれました。

●FT8とはどういったモード?

JT65もFT8も同期型の通信であることから通信す るには双方が正確な時刻に校正されたPCを使って送 信,受信を交互に繰り返します。

FT8の帯域幅は50Hzほどで、伝送速度は6.25ボーとJT65より早く、15秒サイクルでメッセージの伝送 を交互におこないます。60秒サイクルのJT65に対し て4分の一の時間になりますから1交信を最短1分程 度で終えることができます。

受信限界のS/N値は理論上JT65が-25dBである のに対してFT8は-20dBから-21dBと言われていま すが,むしろHFでの交信ではQSO時間が短縮された ことの方のメリットが大きかったと言えます。

送信できる文字数には制限があり(定型文で18文字 など),シグナルレポートはPC内で計算され受信強度 が何dBかを送信します。オートシーケンスを選んで おけば目的の相手局をマウスクリックした後は半自動 でQSOが進みます。

● FT8 のここが面白い

何と言っても、これまでにない通信スタイルでしょう。 マウスクリックだけで通信できてしまう運用の手軽 さ、定型文だけでもQSOを終わらせることができるこ とから、言葉の壁がなくなったことに加え、WSJT系 モードの最大の売りである微弱通信に特化したこと で、ノイズに埋もれた極めて微弱な信号を拾い上げて 通信を可能にしてくれます。

またFT8は1 QSOが約1分程度で完結する効率の 良さ,さらに弱い信号に対しても対処できるエラー訂 正のプログラムが組み込まれており,デコード(復号 化)された信号は常に正しく表示されます。

つまりSSBやCW, RTTYなどの通信のようにオペ レーターが判断し,操作するのではなくコンピュー タープログラムが処理を進めるため,ハイパワー局も QRP局でも相手側でデコードされてしまえばPC画面 には同じように正しいコールサインで表示されます。

言い換えれば貧弱なシステムでもハイパワー局と<u>万</u> 角に運用に参加できることとなります。

一方で自動化された通信はオペレーターの技量によ らないことから、シンプルな運用に飽きてしまった、 という声も聞きます。

ただ実際に運用してみるとコンディションがギリギ リな中でもQSOを無事に完了して、パイルアップが 起きている中で効率よくコールバックを得るなど、こ れまでとは異なる運用テクニックが要求されます。

▲ CLUBLOG による年間交信記録の集計 (2017年)。FT8 (緑 色のグラフ)の急増ぶりがわかる (「https://forums.qrz.com/ index.php?threads/evolution-of-mode-in-2017clublog.596408/」より)

WSJT-X v1.8.0 by K1JT										_ 🗆 🗵
File Configurations View Mode Decode Save Tools Help										
Band Activity							Rx Frequence	у		
UTC dB DT Freq Message			UTC	dB	DT	Freq	Message	2		
102015 -2 0.9 632 ~ CQ BG9HKP OM16	!China	<u> </u>	101715	-20	0.2	191 ~	CQ ZL3	TE RF73		<u> </u>
102015 -7 0.3 737 ~ JH2 BA7BK -16		_	101743	Тx		200 ~	ZL3TE	JA1VDJ P	M95	
102015 2 -0.1 1315 ~ CQ JR7 000 QM09	!Japan		101745	-22	0.2	191 ~	CQ ZL3	TE RF73		
102015 1 0.1 1449 ~ KP3G JA8 QN03			101915	-19	0.2	1135 ~	CQ LU2	FHX FF96	DHOE	_
102015 -4 0.1 1555 ~ VKSFN 10/10K 0188			101933	T		1135 ~	LUZEHX	JAIVDJ I	-19	
102015 -14 1.2 2203 ~ VK3AAK JA2 PM85			101945	-15	8.2	1136 ~	CO 1112	THX FE96	-19	
102015 -21 0.2 2267 ~ CO LW2DAF GF05	!Argentina		102015	-16	0.2	1135 ~	J020H0	LU2FHX	-07	_
102015 -22 1.1 2844 ~ JH5 YC9SBP -06			102030	6	0.1	1137 ~	LU2FHX	JQ2	R-13	
40m										
102030 6 0.1 1137 ~ LU2FHX JQ2										
102030 11 0.1 377 ~ 9W2GVR UA0NL PN53										
102030 -11 0.0 517 ~ CO3SAR JF4 RR73										
102030 -2 0.2 002 ~ 2LSTE JA/ -14										
102030 -16 0.1 802 ~ CO JA1000 0M05	1Japan									
102030 -19 1.0 1035 ~ ZL1CVD JA1 QM06										
102030 -7 0.0 1253 ~ KA3OCS JA2418 PM85										
102030 -19 -0.3 1306 ~ VP8LP JA3										
102030 -14 1.1 1454 ~ YG5NB YC1HVL -05		_								
102030 -11 0.2 1604 ~ CQ BH4DQS 0M95	!China									
102030 -10 0 1 2028 ~ HR11W 1H2 -18	:Japan	_								
102030 -10 0.1 2267 ~ LW2DAF JA6 73										
102030 -14 -0.0 567 ~ WA2VJL JR4 RR73		-								-
Log QSO Stop Monitor	Erase	Decode	1	Enabl	le Tx	1	Halt Tx	1	Tune	Menus
40m ≤ S 7.074 000 F Tx even/1s			Calline	QQ				Answering (QQ	Pwr
DX Call DX Grid Tx 2036 Hz			CC	2				Grid		T.
LU2FHX FF96 Rx 1135 Hz	Rx ← Tx		dE	3				R+dB		
40 Lookup Add Devet 10	Hold Tx Freq		RR	R				73		
-20	□ □ Call 1st	LU2FHX J	A1VDJ - 19					•	Gen msg	-
47 dB 2018 10 12 II NA VHF C	ontest	TNX 73 GL						• •	Free msø	-
Receiving FT8 Last Tx: LU2FHX JA	VDJ - 19									9/15 WD:6m

▲ WSJT-X による FT8 での QSO 画面

PART2 FT8運用に必要な無線機とイン ターフェース

●FT8運用に必要な設備

【無線機に要求されるのは】

無線機はSSB (USB) モードを装備し, VFOはPLL 方式など周波数が安定したもので周波数はデジタル表 示されるものが推奨されます (念のためですが, ここで 言う「USB」は上側波帯 (Upper Side Band) のことで, インターフェースコネクターのUSBではありません)。

デジタル変調では周波数の変動は通信の品質に影響しますので、古いアナログ式VFOの機種は避けましょう。

なおUSBモードがある無線機であれば基本どのバンドでもFT8を運用できます。

【PCはできるだけ最近のスペックのものが理想】

PCは古い機種でもOSがWindows-XP以降であれ ば動作はします。

しかし,公表されているスペックはCPUにCore i3,4GB以上のメモリーが推奨されています。

FT8の運用ではメイン画面以外にスペクトラムや ウォーターフォール画面なども開くため、ディスプレ イについてはできるだけ広い画面のものがお勧めです。

【無線機とPCを接続するケーブルとインターフェース】

無線機によってはインターフェースが必要になる場 合があります,自作も可能ですが市販されているイン ターフェースが便利でお勧めです。

ここではいろいろな接続法があるため混乱される方 が多いようです。最新の無線機では外部インター フェースなしで、USBケーブル1本でPCと無線機を 接続するだけで運用できるまで進化しています。

●無線機とPCの接続

これまでサウンドカードを利用してRTTYやPSK, あるいはJT65を運用してきたのであれば、インター フェースやケーブルをそのまま流用できます。従来の方 法だと無線機とPCを接続するには何本かのケーブルが 必要となり、また無線機の背面にあるACCコネクタが メーカーや機種によりピン配置が異なり複雑でした。

無線機とPCの接続で頭を抱える方が多いようです。こ こで一度基本に立ち返って、無線機とPC間でどういった 信号が受け渡しされているのかをおさらいしておきましょう。

接続に関する基礎知識

RTTYやPSKの通信にはパソコンのサウンドカー ドを使うソフトウェアが使われてきました。

▲ USB シリアル変換ケーブルはさまざ まなものが市販されている

▲接続用 USB ケーブルは,ノイズや回 り込み防止のためコア付きがよい

▲外部接続 USB サウンドユニットの例 (Creative Sound Blaster Play !)

FT8も基本動作は同じで、無線機とパソコン間を接続 するのはわずか3本の信号線だけです(CATやCI-Vを 使った周波数制御を含めると信号線は4本になります)。 ①RXD(受信データ)

② TXD (送信データ)

- ③PTT信号(無線機の送受切り替え)

ここで③のPTT信号の扱いで一つ問題があります。 最近のPCにはシリアル通信 (COM) ポートが装備さ れていないモデルがほとんどです。

PTT信号はCOMポート(RS-232C)のDTRやRTS

の制御ラインを使ってON/OFFしますが,USBポートにはこれらの制御ラインは存在しません。そこで USB-シリアル変換器(あるいはUSB-シリアル変換 ケーブル)を使った変換が必要になります。

これに加えてCATやCI-Vを使って,無線機の周波 数も制御するのであれば,同じくUSBのシリアルの変 換が必要となります。

進化するPCと無線機の接続方法

このように無線機とPC間の接続には複数のケーブ ルが必要ですが、お互いに干渉することが無いよう電

USBIF4CW Gen3 人気のあったUSBIF4CWIこデジタルモー ドへの対応^{*}や無線機のコントロール機 能を追加して新しく登場した。

YAESU SCU-17 基本的にYAESU(八重洲」無線)専用のUSBインターフェース ユニット。無線機とはミニDIN6ビンコネクタで接続。USBバス パワーで動作する。 対応機種: FTDX9000、FTDX5000、FTDX1200、FT-950、 FT-450D、FT-2000、FT-897D、FT-857D、FT-817ND

SignaLink USB 同じくパソコンのUSB端子につなぐだけでさまざまな デジタルモードへ対応する。

▲市販のインターフェースの例

62 WINTER 2019

Rig Expert TI-5000 FT8を含むすべてのデジタルモードに電 話、CWの送受信に対応。WINKEY(定番 のCWエレキー)も内蔵。

付属装置諸元	呼出符号:JA	▲▲▲ 赤字が今回の追加部	1/1
設備名称		パーソナルコンピュータ変調方式	使用する
装置の名称又は種類		方式·規格等	送信機
	方式	AFSK/FSK	第◆送信機
	通信速度	45~110ボー	
RTTY	副搬送波周波数	500Hz~2210Hz	
(変更なし)	周波数偏移	170Hz	
	符号構成	BAUDOT	
	電波形式	F1B,F2B	
	方式	ABPSK/AQPSK	
	通信速度	31.25~62.5ボー	
PSK	副搬送波周波数	500Hz~2700Hz	
(変更なし)	符号構成	STD-VARICODE(通常のVARICODE)	
	モード	BPSK/QPSK	
	電波形式	G1B,F2B	
	方式	8-FSK	
	通信速度	6.25ボー	
сто	周波数偏移幅	43.75Hz	
F I O	符号構成	WSJT 誤り訂正コード:LDPC	
	副搬送波周波数	1500Hz(200~2500Hz 可変)	
	電波形式	F1D	
	方式	65-FSK	
	通信速度	2.7ボー/5.4ボー/10.8ボー	
JT65	周波数偏移幅	+174.96Hz/ +349.92Hz/ +699.84Hz	
(変更なし)	符号構成	WSJT JT65A/ JT65B/ JT65C	
	副搬送波周波数	1270.5Hz	
	電波形式	F1D	
	方式	9-FSK	第◆送信機
	通信速度	最少 6912~ 最大 252000nsps	
JT9	周波数偏移幅	最少 0.4Hz 最大 15.6Hz	
(変更なし)	符号構成	WSJT-X JT9-1/JT9-2/JT9-5/JT9-10/JT9-30	
	副搬送波周波数	同期信号 1500Hz	
	雷波形式	F1D	

(注1) 1.9MHz帯の送信は占有周波数帯幅が200Hz以下のものとします。

▲付属装置諸元の記載例

気的に分離され,信号レベルも適正に調整できなけれ ばなりません。これらを解決した市販のインター フェースも発売されています。

(1) デジタルモードの運用経験がある場合

これまでPC内蔵のサウンドカードを使ったRTTYや PSKの運用経験をお持ちの方は、自作されるなどしてイ ンターフェースユニットをお持ちの方も多いと思います。

これらはFT8の運用でも流用できますので活用しま しょう。

ただし、PC内に装備されるサウンドデバイスを使 うと、PC内部で発生するノイズの影響からS/Nの点 で問題があり、微弱信号を扱うWSJTでは好ましいも のではありません。

USB経由でオーディオ機器を外部に接続する「USB オーディオ」はサウンドに関するユニットをUSBケー ブルによりノイズの多いPC内部から取り出し、外部 に置くことでノイズから逃れS/Nを確保しようとする もので、ノイズ対策としての利用をお勧めします。

(2) 市販のインターフェースもオススメ

新たなデジタルモードが増えたことから国内外で 様々な市販のオールモードインターフェースが登場し ています。多くの製品では、インターフェースとPC 間をUSBケーブル1本で接続できます。 これらのインターフェースは中にUSBオーディオ コーデックのICを持っていて、PCにはUSBオーディ オドライバをインストールします。同時にPTT信号 についてはUSBシリアル変換用のICを介してUSB ケーブルへと送られます。

無線機側との接続は無線機の背面にあるACC端子を 利用するケースが多いため、メーカー別機種ごとにケー ブルが用意されていますので、購入の際には無線機を 指定して接続ケーブルをセットで入手してください。

(3) 外部インターフェース不要, USBケーブル1本 で済む無線機

最新の無線機にはUSB端子が搭載され、USBポートから入出力できるUSBオーディオコーデックの機能を内蔵し、無線機とPC間を1本のUSBケーブルだけで接続することでデジタルモードの運用が可能となり、従来の外付けインターフェースが不要となっています。

無線機とPCを接続する前に無線機で指定のUSBド ライバーをPCにインストールします。同時に無線機側 ではUSBポートで信号を入出力する設定が必要です。

Part3 FT8運用のための免許申請 ● FT8運用のための免許申請

FT8やJT65など、無線機にPCを接続して運用す

付属装置諸元は別途記載

▲無線機設備系統図サンプル(記入例)

るには免許の「変更の申請」か「届け出」が必要です。 手続きの流れは使用する機種により変わるため,ここ では要点だけ記載します。

最近デジタルモード追加にかかわる申請が増加した ことから、2018年3月に関東総合通信局では変更に必 要な工事設計書の記載が簡略化されました。

簡素化後は「無線設備系統図」と「付属装置諸元表」 は添付しますが、「16 工事設計書の欄」には技適番 号と、付属装置の資料が添付されている旨の記載のみ で済むようになりました。

具体的な手続きの流れ

新たに技適機種で開局あるいは機器増設する場合, 新設の場合にはまず技適機種で申請し,その後に付属 装置追加の変更届けをするのが良いでしょう。

また、すでに使用中の技適機種でFT8を運用するの であれば変更届けだけで済みます。気をつけなければ いけないのは技適機器増設と同時に付属装置を付加す ると技適が適用されなくなりますので、保障認定を受 けることになり費用と時間がかかります。

技適が適用されない200Wを超える送信出力の場合 には総合通信局へ申請することになりますが,届け出 になるか,申請が必要かは事前に総合通信局へ確認す ることをお勧めします。

添付書類を準備しよう

FT8を含めて申請するモードが整理できたところで 「付属装置諸元表」を準備しましょう。

▲WSJT-Xのウェブサイト(https://physics.princeton.edu/ pulsar/k1jt/wsjtx.html)

FT8の諸元は以下の通りになります。

【FT8の諸元】
・方式:8-FSK
・通信速度:6.25ボー
・周波数偏移:50Hz
・符号構成:WSJT FT8
・ 副搬送波周波数 :1,500Hz (200~2,900Hz可変)
・モード/電波型式:SSB/F1D

諸元表については無線機メーカーや個人の作成され たサンプルがネット上で見つかりますので、参考にし ながら自身の申請にあった内容で作成しましょう。追 加する諸元の部分は朱書きでわかりやすくします。

FT8の追加が受理された場合には記載事項に変更は ありませんが,新しい日付の免許状が発行されます。

Part4 ソフトのインストールと設定方法 ●FT8運用のためのソフト簡単設定法

デジタルモードのインターフェースを使う場合も, USBケーブル1本で無線機とPCを接続する場合も, 多少設定方法が異なりますが考え方は同じです。

PC側(仮想COMポート)の設定

USB端子を使いPCと無線機の連携を行うため、い ずれの場合もメーカーからダウンロードできる仮想 COMポートドライバー (デジタルモードインターフェー スの場合) やUSBドライバー (USBケーブルで接続の 場合) などをあらかじめPCにインストールします。

USBドライバーをインストール後はPCのコント ロールパネルからデバイスマネージャーを開き, COM ポートが有効であることを確認し, COMポートの番 号をメモしておきましょう。

なおUSBドライバーが無線機に内蔵されている場 合には、PCと無線機を正しく接続して電源を入れる とPCが無線機を認識します(前ページの図①~③)。

無線機側の設定

無線機によってはUSBポートを経由したラインを 生かすため,無線機側の設定も変える必要があります。 つまり変調入力の接続先をACC端子やマイクでなく

外部裙子	3/4
変調入力 (DATA ON)	ACC
外部キーバッド	
CI-V	
USB端子機能 (シリアル)	CI-V 5
変調入力 (DATA ON	1/1
変調入力 (DATA ON MIC	1/1
意識入力 (DATA ON MIC ACC	i) 1/1
RB2.2 (DATA ON MIC ACC MIC,ACC	
MIC ACC MIC,ACC USB	

SETモード→外部端子→変調入力(DATA ON)

【無線機側設定の例】 アイコムのIC-7300における、無線機の設定の例。 SETモードー外部導子から変調入力をUSB端子 に指定することでUSB端子が生かされます。

USBに切り替える設定です。

CATやCI-Vのアドレスやボーレートも設定する場 合があり、ご使用になる無線機のマニュアルに従って ください。の上の図④にアイコムのIC-7300の無線機 側の設定例を示します。

FT8用ソフトウェアの設定

K1JTが開発したWSJT-Xが基本となりますが、こ のWSJT-XをベースにロシアのIgorさん(UA3DJY) が開発したJTDXも使い勝手の良さやデコード時の解 読能力が高いといわれ多くの利用者がいます。現在は この2つがFT8での主流になっています。

ここでは本家WSJT-Xを中心に説明します。

WSJT-X は、Windows 用、Linux 用、OS X な ど OS に合わせたパッケージがダウンロードできます。

まずWindows版での設定を見ていきます。インストー

ルは指示通りに進めば特に問題なく終わると思います。 WSJT-Xを立ち上げたらまずメニューの「File」→ 「Setting」画面を開き運用に必要な最低限の項目を記 入します。

・「General」タブ

	gour i Hutocina	IARU Region: All		
Message generation for type 2 compound c	allsign holders: Full call in T:	x3 💌		
Display				
Blank line between decoding periods		Font		
Display distance in miles		Deceded Text Faut		
Tx messages to Rx frequency window				
Show DXCC entity and worked before s	status			
Show principal prefix instead of country	/ name			
Behavior				
	Enable VHF/UHF/Microw	vave features		
Monitor off at startup				
Monitor off at startup Monitor returns to last used frequency	Allow Tx frequency chan	ges while transmitting		
Monitor off at startup Monitor returns to last used frequency Double-click on call sets Tx enable	Allow Tx frequency chan	ges while transmitting		
Monitor off at startup Monitor returns to last used frequency Double-click on call sets Tx enable Disable Tx after sending 73	 ✓ Allow Tx frequency chan ✓ Single decode ✓ Decode after EME delay 	ges while transmitting		
Monitor off at startup Monitor returns to last used frequency Double-click on call sets Tx enable Disable Tx after sending 73	Allow Tx frequency channer Single decode Decode after EME delay	ges while transmitting Tx watchdog: 6 minutes 🚊		

「Station Details」に自局のコールサインとグリッド スクエアーを入力します。

その他の設定はとりあえずデフォルトのままとします。

▲インストール後にはじめて WSJT-X を立ち上げたときの画面(バージョンは V1.9.1)

WSJT-XはCAT機能(無線機制御機能)を持っており、「Rig」のドロップダウンリストからリグを選択します、CATを使わないときは「None」を選択します。

「Serial Port」はプルダウンメニューからCOMポー トを選択し、先にメモしたCOMポートと一致してい ることを確認します。Baud Rate、Data Bits、Stop Bits、Handshake などは無線機のマニュアルを参考に 設定します。「PTT Method」も無線機とのインター フェースに合わせてVOX、CAT、DTR、RTSを選択 します。その他はデフォルトのままでよいので、一度 「TESTCAT」ボタンを押して緑色に変れば無線機と正 常に繋がっています。続いて「Test PTT」で送受が切 り替わることを確認します(この操作で実際に変調信 号が送信されることはありません)。

・「Audio」タブ

Input: マイク (2- USB Audio (CODEC)	-	Mono 💌
Output: スピーカー (2- USB Au	dio CODEC)	<u> </u>	Mono 💌
Save Directory			
Location: C:/Users/App/AppD	ata/Local/WSJT-X/save		Select
AzEI Directory			
Location: C:/Users/App/AppD	ata/Local/WSJT-X		Select
Remember power settings by b	and		
Transmit	Tune		

「Soundcard」のInput, Output に使われるサウンド デバイスを指定します。使用されるサウンドユニット を選択します。USBオーディオコーデックを利用して いる場合にはInput は「マイク (USB Audio CODEC)」, Outputは「スピーカー (USB Audio Codec)」となって いることを確認します。

・Frequency タブ

ARU Region	Мо	de			Free	quency		L
All	FT	8					10.131 000	MHz (30m)
All	F	🌒 WS JT	-X - A	ld Freque	ncy	<u>?</u> ×	10.132 000	MHz (30m)
All	F	IARU Re	egion:	All		-	10.136 000	MHz (30m)
All	J	Mode:		FT8	_	•	10.138 000	MHz (30m)
		Frequen	cy (MHz)	10.136				
tion Information —			0		Cance	el		
Band 🛆	0_						ription	

DXペディションモードなどで新たに周波数を登録す るときなどに使います。 画 面 上で右クリックして 「Insert」を選択し,モードや周波数(MHz)を入力します。

Part5 FT8の運用方法 運用上の注意点 ●FT8の運用方法

FT8のソフトウェアの設定が終わったらいよいよ FT8を運用してみましょう。

バンド	標準周波数 (MHz)	国内/海外 QSO区分
160m	1.909	
80m	3.531	国内QSOが中心
	3.573	海外とのQSOに限る
40m	7.041	国内QSOが中心
	7.074	海外とのQSOに限る
30m	10.136	国内/海外 QSO
20m	14.074	国内/海外 QSO
17m	18.1	国内/海外 QSO
15m	21.074	国内/海外 QSO
12m	24.915	国内/海外 QSO
10m	28.074	国内/海外 QSO
		国内/海外 QSO
6	50 313	ただしバンドの特性から複数の
UIII	50.515	周波数での住み分けが検討され
		ています。

FT8はどこで運用されているのだろう

それぞれのバンドごとに国際的な運用周波数が決めら れており,通常は標準周波数固定で運用されています。

なお,日本のバンドプランの関係から3,573kHzと 7,074kHzは海外局とのQSOに限られており,日本国 内局同士のQSOは禁止されていますので十分に注意 してください。

FT8ならではの交信スタイル

VFOの周波数は固定したまま,SSB(USBモード) の帯域内で複数の局が運用します。

even	odd	A局	B局	備考	
0秒	15秒	(送信)	(受信)		
(30秒)	(45秒)	CQ JA1RL PM95	CQ JA1RL PM95	A局がCQを送信	
15秒	30秒	(受信)	(送信)		
(45秒)	(60秒)	JA1RL JA1QRZ PM95	JA1RL JA1QRZ PM95		
30秒	45秒	(送信)	(受信)	B局がA局に信号レポートを送る	
(60秒)	(75秒)	JA1QRZ JA1RL -2	JA1QRZ JA1RL -2	(-2は単位dB(デシベル) -2dBのこと)	
45秒	60秒	(受信)	(送信)	B局がA局に了解と信号レポートを送る	
(75秒)	(90秒)	JA1RL JA1QRZ R-5 🔶	JA1RL JA1QRZ R-5	(Rは了解の意味、レポート-5dB)	
60 秒	75秒	(送信)	(受信)	B局から送られたレポートを了解した	
(90秒)	(105秒)	JA1QRZ JA1RL RRR	JA1QRZ JA1RL RRR	(RRR)	
75秒	90 秒	(受信)	(送信)	■ 目 か ふ 72 友 洋 信	
(105秒)	(120秒)	JA1RL JA1QRZ 73 🔶	JA1RL JA1QRZ 73	0月17-1575で151日	
90 秒	105秒	(送信)	(受信)		
(120秒)	(135秒)	JA1QRZ JA1RL 73	JA1QRZ JA1RL 73		
(注記)					

・「even」は定時(0秒/30秒)に送信スタート、「odd」は15秒/45秒に送信スタート

even	odd	A局	B局	備考
0秒	15秒	(送信)	(受信)	
(30秒)	(45秒)	CQ JA1RL PM95 📃	CQ JA1RL PM95	A局がCQを送信
15秒	30 秒	(受信)	(送信)	B局は最初から信号レポートを付けて
(45秒)	(60秒)	JA1RL JA1QRZ -2	JA1RL JA1QRZ -2	A両をコール (例で-2は-2dB(デシベル)のこと)
30 秒	45秒	(送信)	(受信)	A局はB局にR(了解)と信号レポート
(60秒)	(75秒)	JA1QRZ JA1RL -R5 💻	JA1QRZ JA1RL -R5	(この例では-5dB)を送る
45秒	60 秒	(受信)	(送信)	
(75秒)	(90秒)	JA1RL JA1QRZ RR73 🗲	JA1RL JA1QRZ RR73	DらかA向に] 昨と75で达る
60 秒	75秒	(送信)	(受信)	
(90秒)	(105秒)	JA1QRZ JA1RL 73	JA1QRZ JA1RL 73	A)与(は75で)
(注記)				

・「even」は定時(0秒/30秒)に送信スタート、「odd」は15秒/45秒に送信スタート

▲ FT8 の通信の流れ(上が通常 QSO,下はショート QSO)

交信する双方が正確な時刻に基づいて送信,受信を繰 り返し,オートシーケンス(Auto Sequence)を使えば, 交信相手局を指定したあとは基本的にソフトが半自動で 交信終了まで進めてくれます。相手局からの応答が得ら れない場合には一定時間後に送信は自動停止されます。

交信では短い定型文が使われますので, 交信の内容 は簡素です。自由に書ける文章もごく限られますので完 全なラバースタンプQSOです。さらに交信データはロ グソフトへ自動転送、あるいは連携したソフトを経由す るなどして転送し、ログに記録することもできます。

●FT8運用の注意点

コンディションが低迷する中で、FT8を運用する局が 急増し、CWやSSBの信号が聞こえないときでも、FT8 のチャンネルだけはにぎやかな状況が増えてきました。

▲ WSJT-X の FT8 モードでの Wide Graph 画面

ここではFT8ならではの運用の注意点をまとめてみます。

①【運用前の時刻合わせが重要)】

相手局との時刻同期がずれていると交信に至りませ ん、PC時計は正確に合わせておく必要があります(1 秒以内の精度に設定)。NTP/HTTPサーバーへアクセ スしてPCの内部時計を合わせるソフトはフリーのも のがありますので、気に入ったものをあらかじめPC にインストールしてPC起動時に起動するようにして おくとよいでしょう(「桜時計」,「iネッ時計」など)。

【オートシーケンスを使えばQSOは自動で進む】

QSOしたい相手局のコールサインをクリックして応 答があれば、信号レポート(dB値)の送信から73の送 出まで半自動でQSOを終わらせることができます (オートシーケンスON時)。QRMなどで相手局がR(了 解の意味)を返さないと何度もレポートを送り続けて しまいます。状況により途中で「HALT」でオートシー ケンスを停止させることも必要です。

③【スプリットオペレーション】

必ずしも相手局と同じ周波数でQSOする必要はあ りません。スペクトラムやウォーターフォール画面を 監視して空いた周波数に送信周波数を固定しておき, スプリットで相手を呼ぶことでQRMから逃れられま す。WSJT-Xのソフトではメイン画面中央下にある 「Hold Tx Freq」にチェックを入れます。

④【周波数の空き状況はこまめにチェック】

運用局の増加でバンドはいつも込み合い,場合に よっては出る周波数が見つからないほどの時もありま す。ウォーターフォール画面をよく監視し,薄い輝線 も避けるようにして数分間程度はよくモニターして空 きチャンネルを確保します。

デコード率向上のため,設定の勘どころ

①【送信レベルは正しく管理】

送信電力は必要最小限に下げて送信電波の質を良く するため過変調にならないようオーディオレベルに注 意し,送信機のALCメーターの触れを監視します。 無線機の送信レベルはもちろん,サウンドレベルの設 定も注意します(無線機にサウンド機能内蔵の場合に

▲ JTDX による FT8 での QSO 画面

は無線機のメニューで調整します)。

(AGC と受信レベルの調整)

狭帯域なFT8では固定周波数(同じAF帯域内)で 複数の局が運用しています。受信機には不可欠なAGC ですが,近接に強力な信号が現れると横にいる微弱信 号は抑圧されてしまいます。これを防ぐためAGCは OFFにして,目的信号が見えなくなる寸前までRFゲ インを絞ります。同時にノイズブランカーなどの機能 もOFFとします。

より短時間で QSO を終わらせるためのテクニック

FT8は伝送する情報量に限りがあるのと,15秒の定 時間内も定型文での送信内容を変えることはできませ ん。珍局やDX局など多くの局が呼んでいる場合など, 少しでも交信時間を短縮して効率を上げたい場合には 最初から相手局のシグナルレポート (デシベル (dB) で 表示)をつけて呼ぶこともできます (「FT8通信の流れ」 の図参照)。

●FT8による交信のQSLカード交換

上に紹介しているQSLカードは、すべてFT8によ る交信で集まったものです。FT8のようなデジタルモー ドを好んで運用する局は電子的QSLを望む局が多いよ うで、LoTW (Log book Of The World)やeQSLなど ペーパーレスでおこなわれる場合が多いようです。DX ペディションモードの出現で、DXペディションでも

FT8の交信で集まったQSLカードコレクション

▲ 3B8CW (7MHz)

▲ E6AG (28MHz)

▲ 4W6RR (14MHz)

▲ 9X2AW(18MHz)

▲ EA8TL (14MHz)

▲ A41ZZ (7M/10M/14M)

▲ EA9ABC

▲ HZ1FI (18MHz)

RI1ANA RI1ANL

▲ RI1ANL (10MHz)

▲ EA6BH (14MHz)

FT8が使われることが多くなり, OQRS (Online QSL Request System)で簡単にペーパーQSLをリクエスト することも増えています。

Part6 DXペディション専用のモード

WSJT-X (Version 1.9.1以降)には新たにDXペディ ションモードが搭載されています。

2018年のKH1/KH7Zベイカー島へのDXペディションで初めて使われて以降,多くのDXペディションで 使われ素晴らしい成果を上げています。

DXペディション局は一度に複数の局に同時に応答 し、多くの局とQSOできるよう工夫されています。

●DXペディションモードとQSOの流れ

QSOの効率を上げるための工夫がされており、通常のFT8とは運用手順が異なっています。

- ★ Fox (DXペディション局)とHound (呼ぶ側)とに分かれ、Foxは300Hzから900Hzの範囲で送信、Houndは1,000Hzから上でFoxをコールします。Foxは同時に最大5局のHoundとQSOでき、理論的には1時間で500ものQSOが可能ともいわれています。
- ★コールバックされた Hound は自動で1,000Hz以下に QSY し, R+レポートを送信します。続いて Fox が RR73を送り QSO が成立します。このとき Fox は同 時に次の Hound 局にも応 答しており, 順 調なら 1QSO を最短30秒で完了します。
- ★通常のFT8と通信シーケンスが異なることから,運 用周波数も別に指定されます。

▲ SØ1WS (14MHz)

▲ V31MA (7MHz)

●DXペディションモードの設定方法

WSJT-X Ver 1.9.1以降が対応しています(原稿執 筆時点でJTDXは未対応)。

- ・WSJT-Xの「File」→「Settings」→「Advanced」に て「Hound」(呼ぶ側)にチェックを入れるだけです。 このモードに切り替えると1,000Hzから上のHound 局はデコードされなくなります。
- ・リグはCAT等経由でWSJT-Xからコントロールで きるようにしておくことをお勧めします。

●運用上の注意点

FT8ならではの運用形態と,注意事項等があります。

- ・Fox側でMax dB Filter (設定値以上の強い局を排除) が設定されている場合があります。これはパワー競 争に歯止めをかけるのが目的です。
 またエリア指定されていると、エリア以外の局は Fox側でデコードされません。
- ・Foxは同時に複数局あてに送信します。なお、この ような運用は日本国内では許可されていませんので おこなわないでください。

以上,一見複雑に思われますが,実際に使ってみる と非常に効率が良く,DXペディション局からの応答 率も高くなる素晴らしいモードです。

Part7 進化を続ける FT8

WSJT-Xは次々と新たな改良がおこなわれ、しっか りとした開発計画に基づいて開発が続けられています。 開発途中とはいえ、公開されるソフトはどれも信頼

性が高く,安心して評価することができます。2018年 9月にはバージョン2.0のrc版(Release Candidate, 製品候補版)が発表されました。rc版とはベータテス トを終えてユーザー側のさまざまな環境で問題ないか を問いかけるものです。

FT8に関しては情報ペイロードが75bitから77bitへ, 巡回冗長検査(CRS)も12bitから14bitに拡張されて います。さらにFT8の感度が改善され,偽デコードも 改善されています。デコード率が上がったことに加え て,新しいバージョンではこれまで制約があった 「YW18FIFA」といった特殊なコールサインや「PJ4/ K1ABC」といった複合コールサインにも対応できるよ うになりました(この例の場合,従来は単に「K1ABC」 と表示されました)。また一部コンテストでのQSO形 式にも対応しています。

シンボルレートや占有周波数帯幅は変更ありませんで したが、符号の構成に関するプロトコルが変わったこと で現状のFT8とは通信できません。新プロトコルでの運 用は現状のFT8と互換性がないこともあり、7.078MHz と14.078MHzで運用するよう求められています。

なお,バージョン2.0の正式版は2018年12月10日 にリリースされました。

この特集でご説明した1.9.1も最新版の2.0も申請や 操作の基本は変わりません。ただ旧バージョン1.9.1 と,新バージョン2.0では相互に通信の互換性を持た ず,現在1.9.1で運用しているユーザーは,段階的に2.0 に移行し切り替わっていくことでしょう。

これからFT8をはじめようという方は,最新バー ジョンのWSJT-X 2.0からスタートするとよいと思い ます。

(参考) FT8運用のため参考サイト

☆ WSJT-X 本家のページ

https://physics.princeton.edu/pulsar/k1jt/wsjtx. html

- ☆ JA7UDE 大庭氏の翻訳による WSJT-X のマニュアル http://www.qsl.net/j/ja7ude/wsjt/
- ·WSJT-X 1.9.1日本語訳版
- ・FT8 DX pedition モードユーザーガイド日本語訳
- ・WSJT-Xバージョン2.0の新機能 日本語訳
- ☆WSJT-Xバージョン2.0 クイックスタートガイド日 本語版

http://jarl.653.jp/ham_sympo/ham_sympo2018/ FT8_20180204.pdf

- ☆FT8 Operating Guide (ZL2IFB (G4IFB) 著, 英文) http://www.g4ifb.com/FT8_Hinson_tips_for_HF_ DXers.pdf
- ☆ JTDX ダウンロードページ (UA3DJY) https://www.jtdx.tech/en/
- ☆Ham Spots JT65 (FT8) (VK3AMA), ログインが 必要

https://hamspots.net/